Back to Search Start Over

Prediction model for myocardial injury after non-cardiac surgery using machine learning

Authors :
Ah Ran Oh
Jungchan Park
Seo Jeong Shin
Byungjin Choi
Jong-Hwan Lee
Seung-Hwa Lee
Kwangmo Yang
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-9 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Myocardial injury after non-cardiac surgery (MINS) is strongly associated with postoperative outcomes. We developed a prediction model for MINS and have provided it online. Between January 2010 and June 2019, a total of 6811 patients underwent non-cardiac surgery with normal preoperative level of cardiac troponin (cTn). We used machine learning techniques with an extreme gradient boosting algorithm to evaluate the effects of variables on MINS development. We generated two prediction models based on the top 12 and 6 variables. MINS was observed in 1499 (22.0%) patients. The top 12 variables in descending order according to the effects on MINS are preoperative cTn level, intraoperative inotropic drug infusion, operation duration, emergency operation, operation type, age, high-risk surgery, body mass index, chronic kidney disease, coronary artery disease, intraoperative red blood cell transfusion, and current alcoholic use. The prediction models are available at https://sjshin.shinyapps.io/mins_occur_prediction/ . The estimated thresholds were 0.47 in 12-variable models and 0.53 in 6-variable models. The areas under the receiver operating characteristic curves are 0.78 (95% confidence interval [CI] 0.77–0.78) and 0.77 (95% CI 0.77–0.78), respectively, with an accuracy of 0.97 for both models. Using machine learning techniques, we demonstrated prediction models for MINS. These models require further verification in other populations.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.1750a17d8c8441ac8a9e0a5553ca3e72
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-022-26617-w