Back to Search Start Over

Multi-omics analysis to reveal the synergistic mechanism underlying the multiple ingredients of Stephania tetrandra extract on rheumatoid arthritis through the PI3K/Akt signaling pathway

Authors :
Jinfeng Chen
An Zhang
Anzheng Nie
Xiaoxiao Zuo
Lei Zhang
Yuxue Jiao
Lulu Wang
Yang Yang
Kun Liu
Xinli Xue
Yuanyuan Zhuang
Yansha Meng
Jing-Hua Yang
Source :
Frontiers in Pharmacology, Vol 15 (2024)
Publication Year :
2024
Publisher :
Frontiers Media S.A., 2024.

Abstract

Background:Stephania tetrandra has been used for treating rheumatic diseases for thousands of years in rural areas of China. Several studies have found that tetrandrine and fangchinoline can inactivate the PI3K/Akt signaling pathway by reducing the expression and phosphorylation of AKT. However, the mechanism underlying the therapeutic actions of S. tetrandra on RA is not well known.Methods: In this study, we determined the molecular mechanism of the therapeutic effects of the multiple ingredients of S. tetrandra extract (STE) on collagen-induced arthritic (CIA) rats by integrating pharmacometabolomics, proteomics, and PTMomics.Results: In the multi-omics joint analysis, first, the expression signatures of proteins, PTMs, metabolites, and STE ingredients were profiled in CIA rats PBMCs that underwent STE treatment. Bioinformatics analysis were subsequently probed that STE mainly regulated tryptophan metabolism, inflammatory response, and cell adhesion pathways in CIA rats. The interrelated pathways were further constructed, and the findings revealed that STE attenuated the inflammatory response and proliferation of PBMCs in CIA rats by mediating the key targets of the PI3K/Akt pathway, including Hint1, ACP1, FGR, HSP90@157W + dioxidation, and Prkca@220N + 845.4540 Da. The rheumatic functions of Hint1 and ACP1 were further confirmed by applying a transcriptomic data of RA patients who clinically received abatacept therapy. Furthermore, a cross-ome correlation analysis was performed and major in vivo ingredients of STE, including coclaurine-N-glucuronide, Me,coclaurine-O-glc, N-gluA-schefferine, corydamine, corypamine, tetrandrine, and fangchiniline, were found to act on these targerts to inactivate the PI3K/Akt pathway.Conclusion: These results elucidated the molecular mechanism by which the ingredients of STE mediate the expression of the key targets in the PI3K/Akt pathway, leading to anti-rheumatic functions. The findings of this study provided new insights into the synergistic effect of STE against arthritis in rats.

Details

Language :
English
ISSN :
16639812
Volume :
15
Database :
Directory of Open Access Journals
Journal :
Frontiers in Pharmacology
Publication Type :
Academic Journal
Accession number :
edsdoj.16a611a7bf8b49a4a5b214d8dd2e9ce3
Document Type :
article
Full Text :
https://doi.org/10.3389/fphar.2024.1447283