Back to Search Start Over

Inanimate 3D printed model for thoracoscopic repair of esophageal atresia with tracheoesophageal fistula

Authors :
Petra Zahradniková
Jozef Babala
Rebeka Pechanová
Martin Smrek
Pavol Vitovič
Miroslava Laurovičová
Tomáš Bernát
Barbora Nedomová
Source :
Frontiers in Pediatrics, Vol 11 (2023)
Publication Year :
2023
Publisher :
Frontiers Media S.A., 2023.

Abstract

BackgroundThoracoscopic repair of esophageal atresia (EA) and tracheoesophageal fistula (TEF) poses significant technical challenges. This study aimed to develop an inexpensive, reusable, high-fidelity synthetic tissue model for simulating EA/TEF repairs and to assess the validity of the simulator.MethodsBy using 3D printing and silicone casting, we designed an inexpensive and reusable inanimate model for training in thoracoscopic EA/TEF repair. The objective was to validate the model using a 5-point Likert scale and the Objective Structured Assessment of Technical Skills (OSATS) to evaluate participants' surgical proficiency.ResultsA total of 18 participants (7 medical students, 4 pediatric surgery trainees, and 7 experienced surgeons), after being instructed and trained, were asked to perform TEF ligation, dissection, as well as esophageal anastomosis using six sliding knots on the EA/TEF simulator. All participants in the expert group completed the task within the 120-minute time limit, however only 4 (57%) participants from the novice/intermediate completed the task within the time limit. There was a statistically significant difference in OSATS scores for the “flow of task” (p = 0.018) and scores for the “overall MIS skills” (p = 0.010) task distinguishing between novice and intermediates and experts. The simulator demonstrated strong suitability as a training tool, indicated by a mean score of 4.66. The mean scores for the model's realism and the working environment were 4.25 and 4.5, respectively. Overall, the face validity was scored significantly lower in the expert group compared to the novice/intermediate groups (p = 0.0002).ConclusionsOur study established good face and content validity of the simulator. Due to its reusability, and suitability for individual participants, our model holds promise as a training tool for thoracoscopic procedures among surgeons. However, novices and trainees struggled with advanced minimally invasive surgical procedures. Therefore, a structured and focused training curriculum in pediatric MIS is needed for optimal utilization of the available training hours.

Details

Language :
English
ISSN :
22962360
Volume :
11
Database :
Directory of Open Access Journals
Journal :
Frontiers in Pediatrics
Publication Type :
Academic Journal
Accession number :
edsdoj.16a2037d4ef145a3a99cf5d347a700c7
Document Type :
article
Full Text :
https://doi.org/10.3389/fped.2023.1286946