Back to Search
Start Over
Ship Motion Attitude Prediction Based on an Adaptive Dynamic Particle Swarm Optimization Algorithm and Bidirectional LSTM Neural Network
- Source :
- IEEE Access, Vol 8, Pp 90087-90098 (2020)
- Publication Year :
- 2020
- Publisher :
- IEEE, 2020.
-
Abstract
- A new neural network prediction model is proposed for predicting ship motion attitude with high accuracy. This prediction model is based on an adaptive dynamic particle swarm optimization algorithm (ADPSO) and bidirectional long short-term memory (BiLSTM) neural network, which is to optimize the hyperparameters of BiLSTM neural network by the proposed ADPSO algorithm. The ADPSO algorithm introduces dynamic search space strategy into the classical particle swarm optimization algorithm and adjusts the learning factor adaptively to balance the global and local search ability, so as to improve the optimization performance and improve its optimization effect in BiLSTM parameter optimization process. The results show that the model can obtain higher prediction accuracy and faster convergence speed, and has better prediction performance in the prediction of ship motion attitude.
Details
- Language :
- English
- ISSN :
- 21693536
- Volume :
- 8
- Database :
- Directory of Open Access Journals
- Journal :
- IEEE Access
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.169b49eeefe64d55bea7984ef82c8278
- Document Type :
- article
- Full Text :
- https://doi.org/10.1109/ACCESS.2020.2993909