Back to Search Start Over

Thermal cycles behavior and microstructure of AZ31/SiC composite prepared by stir casting

Authors :
Seyed Fereidon Mousavi
Hassan Sharifi
Morteza Tayebi
Bejan Hamawandi
Yashar Behnamian
Source :
Scientific Reports, Vol 12, Iss 1, Pp 1-23 (2022)
Publication Year :
2022
Publisher :
Nature Portfolio, 2022.

Abstract

Abstract In the present work, the effect of thermal cycles on the physical and thermal properties of AZ31 alloy and AZ31/5wt%SiC and AZ31/10wt%SiC composites was investigated. Samples were prepared using the stir casting method and then subjected to precipitation hardening. Thermal cycles were done for as-cast and aged samples with V-shaped notch under 300, 600, and 900 heating and cooling cycles at 150 and 350 °C. The crack length (CL) was evaluated using optical microscope (OM), scanning electron microscope (SEM), and energy-dispersive scanning electron (EDS) analysis. Also, density, porosity, thermal expansion coefficient of the samples were evaluated. X-ray diffraction (XRD) analysis was employed to assess the phases present in the material. The results demonstrated that by increasing the number of thermal cycles up to 600 at 150 °C and 350 °C, the porosity and density of the as-cast and aged AZ31 alloy decreased and increased, respectively; however, the density and open porosity were remained constant for the composite samples. The crack's length enlarged with increasing the thermal cycles from 300 to 600 µm at 150 °C and 300 to 900 µm at 350 °C. It was found that the reinforcement and precipitates prevented the rapid growth of the crack in the magnesium matrix. All in All, composite and the aged samples demonstrated better thermal fatigue resistance compared with that of the unreinforced alloy and as-cast samples, respectively.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
12
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.164d9bbc71e4e7d861690e488e3346e
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-022-19410-2