Back to Search Start Over

Existence of normalized peak solutions for a coupled nonlinear Schrödinger system

Authors :
Yang Jing
Source :
Advances in Nonlinear Analysis, Vol 13, Iss 1, Pp 407-412 (2024)
Publication Year :
2024
Publisher :
De Gruyter, 2024.

Abstract

In this article, we study the following nonlinear Schrödinger system −Δu1+V1(x)u1=αu1u2+μu1,x∈R4,−Δu2+V2(x)u2=α2u12+βu22+μu2,x∈R4,\left\{\begin{array}{ll}-\Delta {u}_{1}+{V}_{1}\left(x){u}_{1}=\alpha {u}_{1}{u}_{2}+\mu {u}_{1},& x\in {{\mathbb{R}}}^{4},\\ -\Delta {u}_{2}+{V}_{2}\left(x){u}_{2}=\frac{\alpha }{2}{u}_{1}^{2}+\beta {u}_{2}^{2}+\mu {u}_{2},& x\in {{\mathbb{R}}}^{4},\end{array}\right. with the constraint ∫R4(u12+u22)dx=1{\int }_{{{\mathbb{R}}}^{4}}\left({u}_{1}^{2}+{u}_{2}^{2}){\rm{d}}x=1, where α>0\alpha \gt 0 and α>β\alpha \gt \beta , μ∈R\mu \in {\mathbb{R}}, V1(x){V}_{1}\left(x), and V2(x){V}_{2}\left(x) are bounded functions. Under some mild assumptions on V1(x){V}_{1}\left(x) and V2(x){V}_{2}\left(x), we prove the existence of normalized peak solutions by using the finite dimensional reduction method, combined with the local Pohozaev identities. Because of the interspecies interaction between the components, we aim to obtain some new technical estimates.

Details

Language :
English
ISSN :
2191950X
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Advances in Nonlinear Analysis
Publication Type :
Academic Journal
Accession number :
edsdoj.16386c26f4a4d9ca2d8d839520e46
Document Type :
article
Full Text :
https://doi.org/10.1515/anona-2023-0113