Back to Search
Start Over
The Role of Biophysical Factors in Organ Development: Insights from Current Organoid Models
- Source :
- Bioengineering, Vol 11, Iss 6, p 619 (2024)
- Publication Year :
- 2024
- Publisher :
- MDPI AG, 2024.
-
Abstract
- Biophysical factors play a fundamental role in human embryonic development. Traditional in vitro models of organogenesis focused on the biochemical environment and did not consider the effects of mechanical forces on developing tissue. While most human tissue has a Young’s modulus in the low kilopascal range, the standard cell culture substrate, plasma-treated polystyrene, has a Young’s modulus of 3 gigapascals, making it 10,000–100,000 times stiffer than native tissues. Modern in vitro approaches attempt to recapitulate the biophysical niche of native organs and have yielded more clinically relevant models of human tissues. Since Clevers’ conception of intestinal organoids in 2009, the field has expanded rapidly, generating stem-cell derived structures, which are transcriptionally similar to fetal tissues, for nearly every organ system in the human body. For this reason, we conjecture that organoids will make their first clinical impact in fetal regenerative medicine as the structures generated ex vivo will better match native fetal tissues. Moreover, autologously sourced transplanted tissues would be able to grow with the developing embryo in a dynamic, fetal environment. As organoid technologies evolve, the resultant tissues will approach the structure and function of adult human organs and may help bridge the gap between preclinical drug candidates and clinically approved therapeutics. In this review, we discuss roles of tissue stiffness, viscoelasticity, and shear forces in organ formation and disease development, suggesting that these physical parameters should be further integrated into organoid models to improve their physiological relevance and therapeutic applicability. It also points to the mechanotransductive Hippo-YAP/TAZ signaling pathway as a key player in the interplay between extracellular matrix stiffness, cellular mechanics, and biochemical pathways. We conclude by highlighting how frontiers in physics can be applied to biology, for example, how quantum entanglement may be applied to better predict spontaneous DNA mutations. In the future, contemporary physical theories may be leveraged to better understand seemingly stochastic events during organogenesis.
- Subjects :
- organoid
bioengineering
mechanobiology
Technology
Biology (General)
QH301-705.5
Subjects
Details
- Language :
- English
- ISSN :
- 23065354
- Volume :
- 11
- Issue :
- 6
- Database :
- Directory of Open Access Journals
- Journal :
- Bioengineering
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.1618d64ac9f74c2dbfe68e7c46056ff6
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/bioengineering11060619