Back to Search Start Over

Discovery of a novel and rich source of gluten-degrading microbial enzymes in the oral cavity.

Authors :
Eva J Helmerhorst
Maram Zamakhchari
Detlef Schuppan
Frank G Oppenheim
Source :
PLoS ONE, Vol 5, Iss 10, p e13264 (2010)
Publication Year :
2010
Publisher :
Public Library of Science (PLoS), 2010.

Abstract

Celiac disease is a T cell mediated-inflammatory enteropathy caused by the ingestion of gluten in genetically predisposed individuals carrying HLA-DQ2 or HLA-DQ8. The immunogenic gliadin epitopes, containing multiple glutamine and proline residues, are largely resistant to degradation by gastric and intestinal proteases. Salivary microorganisms however exhibit glutamine endoprotease activity, discovered towards glutamine- and proline-rich salivary proteins. The aim was to explore if gliadins can serve as substrates for oral microbial enzymes.Proteolytic activity in suspended dental plaque was studied towards a) gliadin-derived paranitroanilide(pNA)-linked synthetic enzyme substrates b) a mixture of natural gliadins and c) synthetic highly immunogenic gliadin peptides (33-mer of α2-gliadin and 26-mer of γ-gliadin). In addition, gliadin zymography was conducted to obtain the approximate molecular weights and pH activity profiles of the gliadin-degrading oral enzymes and liquid iso-electric focusing was performed to establish overall enzyme iso-electric points. Plaque bacteria efficiently hydrolyzed Z-YPQ-pNA, Z-QQP-pNA, Z-PPF-pNA and Z-PFP-pNA, with Z-YPQ-pNA being most rapidly cleaved. Gliadin immunogenic domains were extensively degraded in the presence of oral bacteria. Gliadin zymography revealed that prominent enzymes exhibit molecular weights >70 kD and are active over a broad pH range from 3 to 10. Liquid iso-electric focusing indicated that most gliadin-degrading enzymes are acidic in nature with iso-electric points between 2.5 and 4.0.This is the first reported evidence for gluten-degrading microorganisms associated with the upper gastro-intestinal tract. Such microorganisms may play a hitherto unappreciated role in the digestion of dietary gluten and thus protection from celiac disease in subjects at risk.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
5
Issue :
10
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.1611964493d4a1a8d83ae459dcb20dd
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0013264