Back to Search Start Over

Effect of Fluridone on Roots and Leaf Buds Development in Stem Cuttings of Salix babylonica (L.) ‘Tortuosa’ and Related Metabolic and Physiological Traits

Authors :
Wiesław Wiczkowski
Agnieszka Marasek-Ciołakowska
Dorota Szawara-Nowak
Wiesław Kaszubski
Justyna Góraj-Koniarska
Joanna Mitrus
Marian Saniewski
Marcin Horbowicz
Source :
Molecules, Vol 29, Iss 22, p 5410 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

The herbicide fluridone (1-methyl-3-phenyl-5-[3-trifluoromethyl (phenyl)]-4(1H)-pyridone) interferes with carotenoid biosynthesis in plants by inhibiting the conversion of phytoene to phytofluene. Fluridone also indirectly inhibits the biosynthesis of abscisic acid and strigolactones, and therefore, our study indirectly addresses the effect of reduced ABA on the roots and leaf buds development in stem cuttings of Salix babylonica L. ‘Tortuosa’. The stem cuttings were kept in distilled water (control) or in a solution of fluridone (10 mg/L) in natural greenhouse light and temperature conditions. During the experiments, morphological observations were carried out on developing roots and leaf buds, as well as their appearance and growth. After three weeks of continuous treatments, adventitious roots and leaf buds were collected and analysed. Identification and analysis of anthocyanins were carried out using micro-HPLC-MS/MS-TOF, while HPLC-MS/MS was used to analyse phenolic acids, flavonoids and salicinoids. The fluridone applied significantly inhibited root growth, but the number or density of roots was higher compared to the control. Contents of salicortin and salicin were several dozen times higher in leaf buds than in roots of willow. Fluridone increased the content of salicortin in roots and leaf buds and declined the level of salicin in buds. Fluridone also declined the content of most anthocyanins in roots but enhanced their content in buds, especially cyanidin glucoside, cyanidin galactoside and cyanidin rutinoside. Besides, fluridone markedly decreased the level of chlorophylls and carotenoids in the leaf buds. The results indicate that applied fluridone solution reduced root growth, caused bleaching of leaf buds, and markedly affected the content of secondary metabolites in the adventitious roots and leaf buds of S. babylonica stem cuttings. The paper presents and discusses in detail the significance of fluridone’s effects on physiological processes and secondary metabolism.

Details

Language :
English
ISSN :
14203049
Volume :
29
Issue :
22
Database :
Directory of Open Access Journals
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
edsdoj.15bc89096c48cdb0e97b2173c4f42b
Document Type :
article
Full Text :
https://doi.org/10.3390/molecules29225410