Back to Search Start Over

Comparison of low-concentration carbon dioxide-enriched and tap water immersion on body temperature after passive heating

Authors :
Keiji Hayashi
Source :
Journal of Physiological Anthropology, Vol 40, Iss 1, Pp 1-6 (2021)
Publication Year :
2021
Publisher :
BMC, 2021.

Abstract

Abstract Background Because carbon dioxide (CO2)-enriched water causes cutaneous vasodilation, immersion in CO2-enriched water facilitates heat transfer from the body to the water or from the water to the body. Consequently, immersion in CO2-enriched water raises or reduces body temperature faster than immersion in fresh water. However, it takes time to dissolve CO2 in tap water and because the dissolved CO2 concentration decreases over time, the actual CO2 concentration is likely lower than the stated target concentration. However, it is unclear whether water containing a lower CO2 concentration would also cool the body faster than fresh water after body temperature had been increased. Methods Ten healthy males (mean age = 20 ± 1 years) participated in the study. Participants were first immersed for 15 min in a tap water bath at 40 °C to raise body temperature. They then moved to a tap water or CO2-enriched water bath at 30 °C to reduce body temperature. The CO2 concentration was set at 500 ppm. The present study measured cooling time and cooling rate (slope of the regression line relating auditory canal temperature (T ac) to cooling time) to assess the cooling effect of CO2-enriched water immersion. Results Immersion in 40 °C tap water caused T ac to rise 0.64 ± 0.25 °C in the tap water session and 0.62 ± 0.27 °C in the CO2-enriched water session (P > 0.05). During the 30 °C water immersion, T ac declined to the baseline within 13 ± 6 min in tap water and 10 ± 6 min in CO2-enriched water (P > 0.05). Cooling rates were 0.08 ± 0.06 °C/min in tap water and 0.08 ± 0.04 °C/min in CO2-enriched water (P > 0.05). Conclusions CO2-enriched water containing 500 ppm CO2 did not cool faster than tap water immersion. This suggests that when the water temperature is 30 °C, a CO2 concentration of 500 ppm is insufficient to obtain the advantageous cooling effect during water immersion after body temperature has been increased.

Details

Language :
English
ISSN :
18806805
Volume :
40
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Physiological Anthropology
Publication Type :
Academic Journal
Accession number :
edsdoj.158b1cc7d55c48959300bb977dace67c
Document Type :
article
Full Text :
https://doi.org/10.1186/s40101-021-00271-z