Back to Search Start Over

Three distinct mechanisms, Notch instructive, permissive, and independent, regulate the expression of two different pericardial genes to specify cardiac cell subtypes.

Authors :
Manoj Panta
Andrew J Kump
John M Dalloul
Kristopher R Schwab
Shaad M Ahmad
Source :
PLoS ONE, Vol 15, Iss 10, p e0241191 (2020)
Publication Year :
2020
Publisher :
Public Library of Science (PLoS), 2020.

Abstract

The development of a complex organ involves the specification and differentiation of diverse cell types constituting that organ. Two major cell subtypes, contractile cardial cells (CCs) and nephrocytic pericardial cells (PCs), comprise the Drosophila heart. Binding sites for Suppressor of Hairless [Su(H)], an integral transcription factor in the Notch signaling pathway, are enriched in the enhancers of PC-specific genes. Here we show three distinct mechanisms regulating the expression of two different PC-specific genes, Holes in muscle (Him), and Zn finger homeodomain 1 (zfh1). Him transcription is activated in PCs in a permissive manner by Notch signaling: in the absence of Notch signaling, Su(H) forms a repressor complex with co-repressors and binds to the Him enhancer, repressing its transcription; upon alleviation of this repression by Notch signaling, Him transcription is activated. In contrast, zfh1 is transcribed by a Notch-instructive mechanism in most PCs, where mere alleviation of repression by preventing the binding of Su(H)-co-repressor complex is not sufficient to activate transcription. Our results suggest that upon activation of Notch signaling, the Notch intracellular domain associates with Su(H) to form an activator complex that binds to the zfh1 enhancer, and that this activator complex is necessary for bringing about zfh1 transcription in these PCs. Finally, a third, Notch-independent mechanism activates zfh1 transcription in the remaining, even skipped-expressing, PCs. Collectively, our data show how the same feature, enrichment of Su(H) binding sites in PC-specific gene enhancers, is utilized by two very distinct mechanisms, one permissive, the other instructive, to contribute to the same overall goal: the specification and differentiation of a cardiac cell subtype by activation of the pericardial gene program. Furthermore, our results demonstrate that the zfh1 enhancer drives expression in two different domains using distinct Notch-instructive and Notch-independent mechanisms.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
15
Issue :
10
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.155498889e2c4264889c6fc68689d5d1
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0241191