Back to Search Start Over

Multimodal neuroimaging-based prediction of Parkinson’s disease with mild cognitive impairment using machine learning technique

Authors :
Yongyun Zhu
Fang Wang
Pingping Ning
Yangfan Zhu
Lingfeng Zhang
Kelu Li
Bin Liu
Hui Ren
Zhong Xu
Ailan Pang
Xinglong Yang
Source :
npj Parkinson's Disease, Vol 10, Iss 1, Pp 1-11 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract This study aimed to identify potential markers that can predict Parkinson’s disease with mild cognitive impairment (PDMCI). We retrospectively collected general demographic data, clinically relevant scales, plasma samples, and neuroimaging data (T1-weighted magnetic resonance imaging (MRI) data as well as resting-state functional MRI [Rs-fMRI] data) from 173 individuals. Subsequently, based on the aforementioned multimodal indices, a support vector machine was employed to investigate the machine learning (ML) classification of PD patients with normal cognition (PDNC) and PDMCI. The performance of 29 classifiers was assessed based on various combinations of indicators. Results demonstrated that the optimal classifier in the validation set was composed by clinical + Rs-fMRI+ neurofilament light chain, exhibiting a mean Accuracy of 0.762, a mean area under curve of 0.840, a mean sensitivity of 0.745, along with a mean specificity of 0.783. The ML algorithm based on multimodal data demonstrated enhanced discriminative ability between PDNC and PDMCI patients.

Details

Language :
English
ISSN :
23738057
Volume :
10
Issue :
1
Database :
Directory of Open Access Journals
Journal :
npj Parkinson's Disease
Publication Type :
Academic Journal
Accession number :
edsdoj.154b63c65ae24f58a052f5fe8600f061
Document Type :
article
Full Text :
https://doi.org/10.1038/s41531-024-00828-6