Back to Search
Start Over
Effects of cancer-associated point mutations on the structure, function, and stability of isocitrate dehydrogenase 2
- Source :
- Scientific Reports, Vol 12, Iss 1, Pp 1-11 (2022)
- Publication Year :
- 2022
- Publisher :
- Nature Portfolio, 2022.
-
Abstract
- Abstract Mutations in isocitrate dehydrogenase (IDH) are frequently found in low-grade gliomas, secondary glioblastoma, chondrosarcoma, acute myeloid leukemias, and intrahepatic cholangiocarcinoma. However, the molecular mechanisms of how IDH2 mutations induce carcinogenesis remain unclear. Using overlapping PCR, transfection, immunoblotting, immunoprecipitation, measurements of enzyme activity, glucose, lactic acid, ATP, and reactive oxygen species (ROS), cell viability, protein degradation assays post-inhibition of the 26S proteasome (bortezomib) or HSP90 (17-AAG), and a homology model, we demonstrated that the properties of ten cancer-associated IDH2 variants (R140G/Q/W and R172S/K/M/W/G/C/P) arising from point mutations are closely related to their structure and stability. Compared with wild-type IDH2, the R172 and R140 point mutations resulted in a decrease in IDH2 activity, ROS, and lactate levels and an increase in glucose and ATP levels under normal and hypoxic conditions, indicating that mutant IDH2 increases cell dependency on mitochondrial oxidative phosphorylation, and reduces glycolysis under hypoxia. Overexpression of most of IDH2 point mutants showed anti-proliferative effects in the 293T and BV2 cell lines by inhibition of PI3K/AKT signaling and cyclin D1 expression and/or induced the expression of TNF-α and IL-6. Furthermore, bortezomib treatment resulted in dramatic degradation of IDH2 mutants, including R140G, R140Q, R140W, R172S and R172K, whereas it had little impact on the expression of WT and other mutants (R172M, R172W, R172G, R172C and R172P). In addition, targeting HSP90 minimally affected the expression of mutated IDH2 due to a lack of interaction between HSP90 and IDH2. The homology model further revealed that changes in conformation and IDH2 protein stability appeared to be associated with these point mutations. Taken together, our findings provide information important for understanding the molecular mechanisms of IDH2 mutations in tumors.
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 12
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.1542025bf3fc44a49c69700dba61d23c
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-022-23659-y