Back to Search Start Over

Protein disulfide-isomerase A4 confers glioblastoma angiogenesis promotion capacity and resistance to anti-angiogenic therapy

Authors :
Zewei Tu
Chong Wang
Qing Hu
Chuming Tao
Zhansheng Fang
Li Lin
Kunjian Lei
Min Luo
Yilei Sheng
Xiaoyan Long
Jingying Li
Lei Wu
Kai Huang
Xingen Zhu
Source :
Journal of Experimental & Clinical Cancer Research, Vol 42, Iss 1, Pp 1-19 (2023)
Publication Year :
2023
Publisher :
BMC, 2023.

Abstract

Abstract Introduction Increasing evidence has revealed the key activity of protein disulfide isomerase A4 (PDIA4) in the endoplasmic reticulum stress (ERS) response. However, the role of PDIA4 in regulating glioblastoma (GBM)-specific pro-angiogenesis is still unknown. Methods The expression and prognostic role of PDIA4 were analyzed using a bioinformatics approach and were validated in 32 clinical samples and follow-up data. RNA-sequencing was used to search for PDIA4-associated biological processes in GBM cells, and proteomic mass spectrum (MS) analysis was used to screen for potential PDIA4 substrates. Western blotting, real-time quantitative polymerase chain reaction (RT-qPCR), and enzyme-linked immunosorbent assays (ELISA) were used to measure the levels of the involved factors. Cell migration and tube formation assays determined the pro-angiogenesis activity of PDIA4 in vitro. An intracranial U87 xenograft GBM animal model was constructed to evaluate the pro-angiogenesis role of PDIA4 in vivo. Results Aberrant overexpression of PDIA4 was associated with a poor prognosis in patients with GBM, although PDIA4 could also functionally regulate intrinsic GBM secretion of vascular endothelial growth factor-A (VEGF-A) through its active domains of Cys-X-X-Cys (CXXC) oxidoreductase. Functionally, PDIA4 exhibits pro-angiogenesis activity both in vitro and in vivo, and can be upregulated by ERS through transcriptional regulation of X-box binding protein 1 (XBP1). The XBP1/PDIA4/VEGFA axis partially supports the mechanism underlying GBM cell survival under ER stress. Further, GBM cells with higher expression of PDIA4 showed resistance to antiangiogenic therapy in vivo. Conclusions Our findings revealed the pro-angiogenesis role of PDIA4 in GBM progression and its potential impact on GBM survival under a harsh microenvironment. Targeting PDIA4 might help to improve the efficacy of antiangiogenic therapy in patients with GBM.

Details

Language :
English
ISSN :
17569966
Volume :
42
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Experimental & Clinical Cancer Research
Publication Type :
Academic Journal
Accession number :
edsdoj.14bf50e1a3342008ce82826d018e82b
Document Type :
article
Full Text :
https://doi.org/10.1186/s13046-023-02640-1