Back to Search
Start Over
Polyglutamine-expanded ataxin-3 causes cerebellar dysfunction of SCA3 transgenic mice by inducing transcriptional dysregulation
- Source :
- Neurobiology of Disease, Vol 31, Iss 1, Pp 89-101 (2008)
- Publication Year :
- 2008
- Publisher :
- Elsevier, 2008.
-
Abstract
- In the present study, we prepared a SCA3 animal model by generating transgenic mice expressing polyglutamine-expanded ataxin-3-Q79. Ataxin-3-Q79 was expressed in brain areas implicated in SCA3 neurodegeneration, including cerebellum, pontine nucleus and substantia nigra. Ataxin-3-Q79 transgenic mice displayed motor dysfunction with an onset age of 5–6 months, and neurological symptoms deteriorated in the following months. A prominent neuronal loss was not found in the cerebellum of 10 to 11-month-old ataxin-3-Q79 mice displaying pronounced ataxic symptoms, suggesting that instead of neuronal demise, ataxin-3-Q79 causes neuronal dysfunction of the cerebellum and resulting ataxia. To test the involvement of transcriptional dysregulation in ataxin-3-Q79-induced cerebellar malfunction, microarray analysis and real-time RT-PCR assays were performed to identify altered cerebellar mRNA expressions of ataxin-3-Q79 mice. Compared to non-transgenic mice or mice expressing wild-type ataxin-3-Q22, 10 to 11-month-old ataxin-3-Q79 mice exhibited downregulated mRNA expressions of proteins involved in glutamatergic neurotransmission, intracellular calcium signaling/mobilization or MAP kinase pathways, GABAA/B receptor subunits, heat shock proteins and transcription factor regulating neuronal survival and differentiation. Upregulated expressions of Bax, cyclin D1 and CDK5-p39, which may mediate neuronal death, were also observed in ataxin-3-Q79 transgenic mice. The involvement of transcriptional abnormality in initiating the pathological process of SCA3 was indicated by the finding that 4 to 5-month-old ataxin-3-Q79 mice, which did not display neurological phenotype, exhibited downregulated mRNA levels of genes involved in glutamatergic signaling and signal transduction. Our study suggests that polyglutamine-expanded ataxin-3 causes cerebellar dysfunction and ataxia by disrupting the normal pattern of gene transcriptions.
Details
- Language :
- English
- ISSN :
- 1095953X
- Volume :
- 31
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Neurobiology of Disease
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.147b561a68324264a53797da6300a29c
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.nbd.2008.03.011