Back to Search Start Over

Convolutional neural network for oral cancer detection combined with improved tunicate swarm algorithm to detect oral cancer

Authors :
Xiao Wei
Liu Chanjuan
Jiang Ke
Ye Linyun
Gao Jinxing
Wang Quanbing
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-17 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Early Diagnosis of oral cancer is very important and can save you from some oral malignancies. However, while this approach aids in the rapid healing of patients and the preservation of their lives, there are several causes for poor and wrong diagnosis of oral cancer. In recent years, the use of computer-aided design diagnosis tools as an auxiliary tool alongside clinicians has greatly benefited in more accurate identification of this malignancy. The current study proposes a new approach for identifying oral cancer patients based on image processing and deep learning. The current study employs a recently integrated model of an improved tunicate swarm algorithm to produce an efficient tool for improving a convolutional neural network and delivering an accurate cancer diagnostic system. The approach is then implemented on the oral cancer pictures dataset. The approach is then validated by comparing it to other published papers using various measurement markers. The proposed model achieved an accuracy of 98.70% and a recall of 93.71% in detecting oral cancerous lesions from photographic images. The model also achieved an F1-score of 90.08% and a precision of 96.42%. The final results demonstrate that the offered approach can produce more exact results and can be used in conjunction with clinicians to help in diagnosing oral cancer.

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.13bd1e399c89414bad27b57fc583e767
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-79250-0