Back to Search Start Over

Global flux-driven gyrofluid simulations of internal transport barrier formation by external torque in weak magnetic shear configuration

Authors :
S.H. Ko
S.S. Kim
Hogun Jhang
Juhyung Kim
Source :
Nuclear Fusion, Vol 64, Iss 8, p 086014 (2024)
Publication Year :
2024
Publisher :
IOP Publishing, 2024.

Abstract

Using a global gyrofluid code, we conduct comprehensive flux-driven simulations incorporating external heat and momentum sources/sinks. They involve an external torque ramp while keeping a heating power constant. Simulations show the formation of internal transport barriers (ITBs) in ion heat and parallel momentum in weak magnetic shear configuration. The ITB formation is attributed to the reduction of turbulent transport accompanied by strong $\boldsymbol{E} \times \boldsymbol{B}$ flow shear generation, where the majority of $\boldsymbol{E} \times \boldsymbol{B}$ shear arises from plasma rotation shear. In contrast, only a minor confinement improvement is observed in strong magnetic shear configuration. There exists a substantial difference in the rotation shear between the weak and strong magnetic shear cases at the same amount of external torque. Transport analysis implies that the difference comes from intrinsic rotation generated by residual stress. Global linear simulations demonstrate that the effect of $\boldsymbol{E} \times \boldsymbol{B}$ shear on $k_\parallel$ symmetry breaking is enhanced in weak magnetic shear configuration, explaining the origin of the difference in intrinsic rotation. The ITB is not achieved when the external torque is injected in counter-direction to intrinsic rotation. It is also shown that threshold torque for the ITB formation depends on power and the ratio of external torque to heating power should exceed a critical value to attain an ITB.

Details

Language :
English
ISSN :
17414326 and 00295515
Volume :
64
Issue :
8
Database :
Directory of Open Access Journals
Journal :
Nuclear Fusion
Publication Type :
Academic Journal
Accession number :
edsdoj.1326e916ca0341eb8a118bc63020447c
Document Type :
article
Full Text :
https://doi.org/10.1088/1741-4326/ad54d5