Back to Search
Start Over
A Recommender System for Improving Median Plane Sound Localization Performance Based on a Nonlinear Representation of HRTFs
- Source :
- IEEE Access, Vol 6, Pp 24829-24836 (2018)
- Publication Year :
- 2018
- Publisher :
- IEEE, 2018.
-
Abstract
- We propose a new method to improve median plane sound localization performance using a nonlinear representation of head-related transfer functions (HRTFs) and a recommender system. First, we reduce the dimensionality of an HRTF data set with multiple subjects using manifold learning in conjunction with a customized intersubject graph which takes into account relevant prior knowledge of HRTFs. Then, we use a sound localization model to estimate a subject's localization performance in terms of polar error and quadrant error rate. These metrics are merged to form a single rating per HRTF pair that we feed into a recommender system. Finally, the recommender system takes the low-dimensional HRTF representation as well as the ratings obtained from the localization model to predict the best HRTF set, possibly constructed by mixing HRTFs from different individuals, that minimizes a subject's localization error. The simulation results show that our method is capable of choosing a set of HRTFs that improves the median plane localization performance with respect to the mean localization performance using non-individualized HRTFs. Moreover, the localization performance achieved by our HRTF recommender system shows no significant difference to the localization performance observed with the best matching non-individualized HRTFs but with the advantage of not having to perform listening tests with all individuals' HRTFs from the database.
Details
- Language :
- English
- ISSN :
- 21693536
- Volume :
- 6
- Database :
- Directory of Open Access Journals
- Journal :
- IEEE Access
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.130033e140c24c04b5c3a4f746427dd3
- Document Type :
- article
- Full Text :
- https://doi.org/10.1109/ACCESS.2018.2832645