Back to Search Start Over

Characteristic analysis of the differences between total electron content (TEC) values in global ionosphere map (GIM) grids

Authors :
Q. Wang
J. Zhu
G. Yang
Source :
Annales Geophysicae, Vol 42, Pp 45-53 (2024)
Publication Year :
2024
Publisher :
Copernicus Publications, 2024.

Abstract

Using total electron content (TEC) from a global ionosphere map (GIM) for ionospheric delay correction is a common method of eliminating ionospheric errors in satellite navigation and positioning. On this basis, the TEC of a puncture point can be obtained by GIM grid TEC interpolation. However, in terms of grid, only few studies have analyzed the TEC value size characteristics of its four grid points, that is, the TEC difference characteristics among them. In view of this, by utilizing the GIM data from high solar-activity years (2014) and low solar-activity years (2021) provided by CODE (Center for Orbit Determination in Europe), this paper proposes the grid TEC difference as a way of analyzing TEC variation characteristics within the grid, which is conducive to exploring and analyzing the variation characteristics of the ionosphere TEC in the single-station area. The value is larger in high solar-activity years and generally small in low solar-activity years, and the value of high-latitude areas is always smaller than that of low-latitude areas. Specifically, in high solar-activity years, most of the GIM grid TEC internal differences are within 4 TECu (1 TECu = 1016 electrons m−2) in high-latitude and midlatitude regions, while only 78.17 % are in low-latitude regions. In low solar-activity years, the TEC difference values within a GIM grid are mostly less than 2 TECu, and most of them in the high and middle latitudes are within 1 TECu. The main finding of this analysis is that the grid TEC differences are small for most GIM grids, especially in the midlatitudes to high latitudes of low solar years. This means that relevant extraction methods and processes can be simplified when TEC within these GIM grids is needed.

Details

Language :
English
ISSN :
09927689 and 14320576
Volume :
42
Database :
Directory of Open Access Journals
Journal :
Annales Geophysicae
Publication Type :
Academic Journal
Accession number :
edsdoj.12f873fff1d041368981c496795587a6
Document Type :
article
Full Text :
https://doi.org/10.5194/angeo-42-45-2024