Back to Search Start Over

Dynamic PET reveals compartmentalized brain and lung tissue antibiotic exposures of tuberculosis drugs

Authors :
Xueyi Chen
Bhavatharini Arun
Oscar J. Nino-Meza
Mona O. Sarhan
Medha Singh
Byeonghoon Jeon
Kishor Mane
Maunank Shah
Elizabeth W. Tucker
Laurence S. Carroll
Joel S. Freundlich
Charles A. Peloquin
Vijay D. Ivaturi
Sanjay K. Jain
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-11 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Tuberculosis (TB) remains a leading cause of death, but antibiotic treatments for tuberculous meningitis, the deadliest form of TB, are based on those developed for pulmonary TB and not optimized for brain penetration. Here, we perform first-in-human dynamic 18F-pretomanid positron emission tomography (PET) in eight human subjects to visualize 18F-pretomanid biodistribution as concentration-time exposures in multiple compartments (NCT05609552), demonstrating preferential brain versus lung tissue partitioning. Preferential, antibiotic-specific partitioning into brain or lung tissues of several antibiotics, active against multidrug resistant (MDR) Mycobacterium tuberculosis strains, are confirmed in experimentally-infected mice and rabbits, using dynamic PET with chemically identical antibiotic radioanalogs, and postmortem mass spectrometry measurements. PET-facilitated pharmacokinetic modeling predicts human dosing necessary to attain therapeutic brain exposures. These data are used to design optimized, pretomanid-based regimens which are evaluated at human equipotent dosing in a mouse model of TB meningitis, demonstrating excellent bactericidal activity without an increase in intracerebral inflammation or brain injury. Importantly, several antibiotic regimens demonstrate discordant activities in brain and lung tissues in the same animal, correlating with tissue antibiotic exposures. These data provide a mechanistic basis for the compartmentalized activities of antibiotic regimens, with important implications for developing treatments for meningitis and other infections in compartments with unique antibiotic penetration.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.12b747e27b024b34afbe5771b810380b
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-50989-4