Back to Search Start Over

Smoothing Complete Feature Pyramid Networks for Roll Mark Detection of Steel Strips

Authors :
Qiwu Luo
Weiqiang Jiang
Jiaojiao Su
Jiaqiu Ai
Chunhua Yang
Source :
Sensors, Vol 21, Iss 21, p 7264 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Steel strip acts as a fundamental material for the steel industry. Surface defects threaten the steel quality and cause substantial economic and reputation losses. Roll marks, always occurring periodically in a large area, are put on the top of the list of the most serious defects by steel mills. Essentially, the online roll mark detection is a tiny target inspection task in high-resolution images captured under harsh environment. In this paper, a novel method—namely, Smoothing Complete Feature Pyramid Networks (SCFPN)—is proposed for the above focused task. In particular, the concept of complete intersection over union (CIoU) is applied in feature pyramid networks to obtain faster fitting speed and higher prediction accuracy by suppressing the vanishing gradient in training process. Furthermore, label smoothing is employed to promote the generalization ability of model. In view of lack of public surface image database of steel strips, a raw defect database of hot-rolled steel strip surface, CSU_STEEL, is opened for the first time. Experiments on two public databases (DeepPCB and NEU) and one fresh texture database (CSU_STEEL) indicate that our SCFPN yields more competitive results than several prestigious networks—including Faster R-CNN, SSD, YOLOv3, YOLOv4, FPN, DIN, DDN, and CFPN.

Details

Language :
English
ISSN :
14248220
Volume :
21
Issue :
21
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.12af86a8f1bb42089597c5ce70089c8a
Document Type :
article
Full Text :
https://doi.org/10.3390/s21217264