Back to Search Start Over

Renal denervation reverses ventricular structural and functional remodeling in failing rabbit hearts

Authors :
Ting-Chun Huang
Li-Wei Lo
Yu-Hui Chou
Wei-Lun Lin
Shih-Lin Chang
Yenn-Jiang Lin
Shin-Huei Liu
Wen-Han Cheng
Ping-Yen Liu
Shih-Ann Chen
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-9 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Renal denervation (RDN) suppresses the activity of the renin–angiotensin–aldosterone system and inflammatory cytokines, leading to the prevention of cardiac remodeling. Limited studies have reported the effects of renal denervation on ventricular electrophysiology. We aimed to use optical mapping to evaluate the effect of RDN on ventricular structural and electrical remodeling in a tachycardia-induced cardiomyopathy rabbit model. Eighteen rabbits were randomized into 4 groups: sham control group (n = 5), renal denervation group receiving RDN (n = 5), heart failure group receiving rapid ventricular pacing for 1 month (n = 4), and RDN-heart failure group (n = 4). Rabbit hearts were harvested for optical mapping. Different cycle lengths were paced (400, 300, 250, 200, and 150 ms), and the results were analyzed. In optical mapping, the heart failure group had a significantly slower epicardial ventricular conduction velocity than the other three groups. The RDN-heart failure, sham control, and RDN groups had similar velocities. We then analyzed the 80% action potential duration at different pacing cycle lengths, which showed a shorter action potential duration as cycle length decreased (P for trend

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.129b8f67d923493ab2c897a4a63f2784
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-023-35954-3