Back to Search Start Over

Simulation and Experiment of the Trapping Trajectory for Janus Particles in Linearly Polarized Optical Traps

Authors :
Xiaoqing Gao
Cong Zhai
Zuzeng Lin
Yulu Chen
Hongbin Li
Chunguang Hu
Source :
Micromachines, Vol 13, Iss 4, p 608 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

The highly focused laser beam is capable of confining micro-sized particle in its focus. This is widely known as optical trapping. The Janus particle is composed of two hemispheres with different refractive indexes. In a linearly polarized optical trap, the Janus particle tends to align itself to an orientation where the interface of the two hemispheres is parallel to the laser propagation as well as the polarization direction. This enables a controllable approach that rotates the trapped particle with fine accuracy and could be used in partial measurement. However, due to the complexity of the interaction of the optical field and refractive index distribution, the trapping trajectory of the Janus particle in the linearly polarized optical trap is still uncovered. In this paper, we focus on the dynamic trapping process and the steady position and orientation of the Janus particle in the optical trap from both simulation and experimental aspects. The trapping process recorded by a high speed camera coincides with the simulation result calculated using the T-matrix model, which not only reveals the trapping trajectory, but also provides a practical simulation solution for more complicated structures and trapping motions.

Details

Language :
English
ISSN :
2072666X
Volume :
13
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Micromachines
Publication Type :
Academic Journal
Accession number :
edsdoj.12412aeb872e4496a2b7e4ef08695ce7
Document Type :
article
Full Text :
https://doi.org/10.3390/mi13040608