Back to Search Start Over

Evaluation of a multi-model, multi-constituent assimilation framework for tropospheric chemical reanalysis

Authors :
K. Miyazaki
K. W. Bowman
K. Yumimoto
T. Walker
K. Sudo
Source :
Atmospheric Chemistry and Physics, Vol 20, Pp 931-967 (2020)
Publication Year :
2020
Publisher :
Copernicus Publications, 2020.

Abstract

We introduce a Multi-mOdel Multi-cOnstituent Chemical data assimilation (MOMO-Chem) framework that directly accounts for model error in transport and chemistry, and we integrate a portfolio of data assimilation analyses obtained using multiple forward chemical transport models in a state-of-the-art ensemble Kalman filter data assimilation system. The data assimilation simultaneously optimizes both concentrations and emissions of multiple species through ingestion of a suite of measurements (ozone, NO2, CO, HNO3) from multiple satellite sensors. In spite of substantial model differences, the observational density and accuracy was sufficient for the assimilation to reduce the multi-model spread by 20 %–85 % for ozone and annual mean bias by 39 %–97 % for ozone in the middle troposphere, while simultaneously reducing the tropospheric NO2 column biases by more than 40 % and the negative biases of surface CO in the Northern Hemisphere by 41 %–94 %. For tropospheric mean OH, the multi-model mean meridional hemispheric gradient was reduced from 1.32±0.03 to 1.19±0.03, while the multi-model spread was reduced by 24 %–58 % over polluted areas. The uncertainty ranges in the a posteriori emissions due to model errors were quantified in 4 %–31 % for NOx and 13 %–35 % for CO regional emissions. Harnessing assimilation increments in both NOx and ozone, we show that the sensitivity of ozone and NO2 surface concentrations to NOx emissions varied by a factor of 2 for end-member models, revealing fundamental differences in the representation of fast chemical and dynamical processes. A systematic investigation of model ozone response and analysis increment in MOMO-Chem could benefit evaluation of future prediction of the chemistry–climate system as a hierarchical emergent constraint.

Subjects

Subjects :
Physics
QC1-999
Chemistry
QD1-999

Details

Language :
English
ISSN :
16807316 and 16807324
Volume :
20
Database :
Directory of Open Access Journals
Journal :
Atmospheric Chemistry and Physics
Publication Type :
Academic Journal
Accession number :
edsdoj.12272987d6594e8583ab5ca7ccdfbb5d
Document Type :
article
Full Text :
https://doi.org/10.5194/acp-20-931-2020