Back to Search Start Over

Convolutions in (µ, ν)-pseudo-almost periodic and (µ, ν)-pseudo-almost automorphic function spaces and applications to solve integral equations

Authors :
David Békollè
Khalil Ezzinbi
Samir Fatajou
Duplex Elvis Houpa Danga
Fritz Mbounja Béssémè
Source :
Cubo, Vol 23, Iss 1, Pp 63-85 (2021)
Publication Year :
2021
Publisher :
Universidad de La Frontera, 2021.

Abstract

In this paper we give sufficient conditions on $k\in L^1(\mathbb{R})$ and the positive measures $\mu$, $\nu$ such that the doubly-measure pseudo-almost periodic (respectively, doubly-measure pseudo-almost automorphic) function spaces are invariant by the convolution product $\zeta f=k\ast f$. We provide an appropriate example to illustrate our convolution results. As a consequence, we study under Acquistapace-Terreni conditions and exponential dichotomy, the existence and uniqueness of $\left( \mu,\nu\right)$- pseudo-almost periodic (respectively, $\left( \mu,\nu\right)$- pseudo-almost automorphic) solutions to some nonautonomous partial evolution equations in Banach spaces like neutral systems.

Details

Language :
English
ISSN :
07190646 and 07167776
Volume :
23
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Cubo
Publication Type :
Academic Journal
Accession number :
edsdoj.11fbf7aade6f4b709dd5edf993ec40fd
Document Type :
article
Full Text :
https://doi.org/10.4067/S0719-06462021000100063