Back to Search
Start Over
Convolutions in (µ, ν)-pseudo-almost periodic and (µ, ν)-pseudo-almost automorphic function spaces and applications to solve integral equations
- Source :
- Cubo, Vol 23, Iss 1, Pp 63-85 (2021)
- Publication Year :
- 2021
- Publisher :
- Universidad de La Frontera, 2021.
-
Abstract
- In this paper we give sufficient conditions on $k\in L^1(\mathbb{R})$ and the positive measures $\mu$, $\nu$ such that the doubly-measure pseudo-almost periodic (respectively, doubly-measure pseudo-almost automorphic) function spaces are invariant by the convolution product $\zeta f=k\ast f$. We provide an appropriate example to illustrate our convolution results. As a consequence, we study under Acquistapace-Terreni conditions and exponential dichotomy, the existence and uniqueness of $\left( \mu,\nu\right)$- pseudo-almost periodic (respectively, $\left( \mu,\nu\right)$- pseudo-almost automorphic) solutions to some nonautonomous partial evolution equations in Banach spaces like neutral systems.
Details
- Language :
- English
- ISSN :
- 07190646 and 07167776
- Volume :
- 23
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Cubo
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.11fbf7aade6f4b709dd5edf993ec40fd
- Document Type :
- article
- Full Text :
- https://doi.org/10.4067/S0719-06462021000100063