Back to Search
Start Over
GluN2 Subunit-Dependent Redox Modulation of NMDA Receptor Activation by Homocysteine
- Source :
- Biomolecules, Vol 10, Iss 10, p 1441 (2020)
- Publication Year :
- 2020
- Publisher :
- MDPI AG, 2020.
-
Abstract
- Homocysteine (HCY) molecule combines distinct pharmacological properties as an agonist of N-methyl-d-aspartate receptors (NMDARs) and a reducing agent. Whereas NMDAR activation by HCY was elucidated, whether the redox modulation contributes to its action is unclear. Here, using patch-clamp recording and imaging of intracellular Ca2+, we study dithiothreitol (DTT) effects on currents and Ca2+ responses activated by HCY through native NMDARs and recombinant diheteromeric GluN1/2A, GluN1/2B, and GluN1/2C receptors. Within a wide range (1–800 μM) of [HCY]s, the concentration–activation relationships for recombinant NMDARs revealed a biphasicness. The high-affinity component obtained between 1 and 100 µM [HCY]s corresponding to the NMDAR activation was not affected by 1 mM DTT. The low-affinity phase observed at [HCY]s above 200 μM probably originated from thiol-dependent redox modulation of NMDARs. The reduction of NMDAR disulfide bonds by either 1 mM DTT or 1 mM HCY decreased GluN1/2A currents activated by HCY. In contrast, HCY-elicited GluN1/2B currents were enhanced due to the remarkable weakening of GluN1/2B desensitization. In fact, cleaving NMDAR disulfide bonds in neurons reversed the HCY-induced Ca2+ accumulation, making it dependent on GluN2B- rather than GluN2A-containing NMDARs. Thus, estimated concentrations for the HCY redox effects exceed those in the plasma during intermediate hyperhomocysteinemia but may occur during severe hyperhomocysteinemia.
Details
- Language :
- English
- ISSN :
- 2218273X
- Volume :
- 10
- Issue :
- 10
- Database :
- Directory of Open Access Journals
- Journal :
- Biomolecules
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.11fa8d42a72546e79bfb015caaa97582
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/biom10101441