Back to Search Start Over

Laser Remote Sensing of Seismic Wave with Sub-Millimeter Scale Amplitude Based on Doppler Characteristics Extracted from Wavefront Sensor

Authors :
Quan Luo
Hongsheng Luo
Guihan Wu
Xiang Ji
Jinshan Su
Wei Jiang
Source :
Photonics, Vol 11, Iss 3, p 204 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Laser remote sensing of earthquake waves has the potential to be used in many applications. This article shows a Doppler model for laser remote sensing of seismic waves based on a wavefront sensor. The longitudinal vibration wave is analyzed using remote sensing, guided by theoretical principles. To determine the magnitude of ground vibration, we employ the method of wavefront phase change analysis, utilizing a continuous laser emitting light with a wavelength of 635 nm to illuminate the ground target. The ground vibration amplitude within the range of 0.12–1.18 mm was examined, confirming the reasonableness of the Doppler model. Simultaneously, the experimental findings indicate that the system exhibits a certain enhancement in detection accuracy compared to the conventional laser remote sensing detection technique. This approach can detect vibration signals at a sub-millimeter scale level, with an accuracy of 1% to 2%. The approach can fulfill the requirements for detecting seismic waves with low frequencies.

Details

Language :
English
ISSN :
23046732
Volume :
11
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Photonics
Publication Type :
Academic Journal
Accession number :
edsdoj.11f29d26050540b2815c6f76a6800baa
Document Type :
article
Full Text :
https://doi.org/10.3390/photonics11030204