Back to Search Start Over

Profiling the Influence of Gene Variants Related to Folate-Mediated One-Carbon Metabolism on the Outcome of In Vitro Fertilization (IVF) with Donor Oocytes in Recipients Receiving Folic Acid Fortification

Authors :
Arturo Reyes Palomares
Maximiliano Ruiz-Galdon
Kui Liu
Armando Reyes-Engel
Kenny A. Rodriguez-Wallberg
Source :
International Journal of Molecular Sciences, Vol 23, Iss 19, p 11298 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Nutritional status and gene polymorphisms of one-carbon metabolism confer a well-known interaction that in pregnant women may affect embryo viability and the health of the newborn. Folate metabolism directly impacts nucleotide synthesis and methylation, which is of increasing interest in the reproductive medicine field. Studies assessing the genetic influence of folate metabolism on IVF treatments have currently been performed in women using their own oocytes. Most of these patients seeking to have a child or undergoing IVF treatments are advised to preventively intake folate supplies that restore known metabolic imbalances, but the treatments could lead to the promotion of specific enzymes in specific women, depending on their genetic variance. In the present study, we assess the influence of candidate gene variants related to folate metabolism, such as Serine Hydroxymethyltransferase 1 SHMT1 (rs1979276 and rs1979277), Betaine-Homocysteine S-Methyltransferase BHMT (rs3733890), Methionine synthase reductase MTRR (rs1801394), Methylenetetrahydrofolate reductase MTHFR (rs1801131 and rs1801133), methionine synthase MTR (rs12749581), ATP Binding Cassette Subfamily B Member 1 ABCB1 (rs1045642) and folate receptor alpha FOLR1 (rs2071010) on the success of IVF treatment performed in women being recipients of donated oocytes. The implication of such gene variants seems to have no direct impact on pregnancy consecution after IVF; however, several gene variants could influence pregnancy loss events or pregnancy maintenance, as consequence of folic acid fortification.

Details

Language :
English
ISSN :
14220067 and 16616596
Volume :
23
Issue :
19
Database :
Directory of Open Access Journals
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.11c62f5f97494406951ff53e2ce5653d
Document Type :
article
Full Text :
https://doi.org/10.3390/ijms231911298