Back to Search Start Over

Hyperoxia Disrupts Lung Lymphatic Homeostasis in Neonatal Mice

Authors :
Nithyapriya Shankar
Shyam Thapa
Amrit Kumar Shrestha
Poonam Sarkar
M. Waleed Gaber
Roberto Barrios
Binoy Shivanna
Source :
Antioxidants, Vol 12, Iss 3, p 620 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Inflammation causes bronchopulmonary dysplasia (BPD), a common lung disease of preterm infants. One reason this disease lacks specific therapies is the paucity of information on the mechanisms regulating inflammation in developing lungs. We address this gap by characterizing the lymphatic phenotype in an experimental BPD model because lymphatics are major regulators of immune homeostasis. We hypothesized that hyperoxia (HO), a major risk factor for experimental and human BPD, disrupts lymphatic endothelial homeostasis using neonatal mice and human dermal lymphatic endothelial cells (HDLECs). Exposure to 70% O2 for 24–72 h decreased the expression of prospero homeobox 1 (Prox1) and vascular endothelial growth factor c (Vegf-c) and increased the expression of heme oxygenase 1 and NAD(P)H dehydrogenase [quinone]1 in HDLECs, and reduced their tubule formation ability. Next, we determined Prox1 and Vegf-c mRNA levels on postnatal days (P) 7 and 14 in neonatal murine lungs. The mRNA levels of these genes increased from P7 to P14, and 70% O2 exposure for 14 d (HO) attenuated this physiological increase in pro-lymphatic factors. Further, HO exposure decreased VEGFR3+ and podoplanin+ lymphatic vessel density and lymphatic function in neonatal murine lungs. Collectively, our results validate the hypothesis that HO disrupts lymphatic endothelial homeostasis.

Details

Language :
English
ISSN :
20763921
Volume :
12
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Antioxidants
Publication Type :
Academic Journal
Accession number :
edsdoj.1176f6cf27a446618f144c0583ae2c0a
Document Type :
article
Full Text :
https://doi.org/10.3390/antiox12030620