Back to Search Start Over

[Tc(NO)(Cp)(PPh3)Cl] and [Tc(NO)(Cp)(PPh3)(NCCH3)](PF6), and Their Reactions with Pyridine and Chalcogen Donors

Authors :
Moritz Johannes Ernst
Abdullah Abdulkader
Adelheid Hagenbach
Guilhem Claude
Maximilian Roca Jungfer
Ulrich Abram
Source :
Molecules, Vol 29, Iss 5, p 1114 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Reactions of the technetium(I) nitrosyl complex [Tc(NO)(Cp)(PPh3)Cl] with triphenylphosphine chalcogenides EPPh3 (E = O, S, Se), and Ag(PF6) in a CH2Cl2/MeOH mixture (v/v, 2/1) result in an exchange of the chlorido ligand and the formation of [Tc(NO)(Cp)(PPh3)(EPPh3)](PF6) compounds. The cationic acetonitrile complex [Tc(NO)(Cp)(PPh3)(NCCH3)]+ is formed when the reaction is conducted in NCCH3 without additional ligands. During the isolation of the corresponding PF6− salt a gradual decomposition of the anion was detected in the solvent mixture applied. The yields and the purity of the product increase when the BF4− salt is used instead. The acetonitrile ligand is bound remarkably strongly to technetium and exchange reactions readily proceed only with strong donors, such as pyridine or ligands with ‘soft’ donor atoms, such as the thioether thioxane. Substitutions on the cyclopentadienyl ring do not significantly influence the ligand exchange behavior of the starting material. 99Tc NMR spectroscopy is a valuable tool for the evaluation of reactions of the complexes of the present study. The extremely large chemical shift range of this method allows the ready detection of corresponding ligand exchange reactions. The observed 99Tc chemical shifts depend on the donor properties of the ligands. DFT calculations support the discussions about the experimental results and provide explanations for some of the unusual findings.

Details

Language :
English
ISSN :
14203049
Volume :
29
Issue :
5
Database :
Directory of Open Access Journals
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
edsdoj.1156c3f3b38f4295a83573473b814731
Document Type :
article
Full Text :
https://doi.org/10.3390/molecules29051114