Back to Search
Start Over
Surface-induced water crystallisation driven by precursors formed in negative pressure regions
- Source :
- Nature Communications, Vol 15, Iss 1, Pp 1-10 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract Ice nucleation is a crucial process in nature and industries; however, the role of the free surface of water in this process remains unclear. To address this, we investigate the microscopic freezing process using brute-force molecular dynamics simulations. We discover that the free surface assists ice nucleation through an unexpected mechanism. The surface-induced negative pressure enhances the formation of local structures with a ring topology characteristic of Ice 0-like symmetry, promoting ice nucleation despite the symmetry differing from ordinary ice crystals. Unlike substrate-induced nucleation via water-solid interactions that occurs directly on the surface, this negative-pressure-induced mechanism promotes ice nucleation slightly inward the surface. Our findings provide a molecular-level understanding of the mechanism and pathway behind free-surface-induced ice formation, resolving the longstanding debate. The implications of our discoveries are of substantial importance in areas such as cloud formation, food technology, and other fields where ice nucleation plays a pivotal role.
- Subjects :
- Science
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 15
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.112e1c9aa1d04d1bbbe4a3398453bdf6
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41467-024-50188-1