Back to Search
Start Over
Robust quantum dots charge autotuning using neural network uncertainty
- Source :
- Machine Learning: Science and Technology, Vol 5, Iss 4, p 045034 (2024)
- Publication Year :
- 2024
- Publisher :
- IOP Publishing, 2024.
-
Abstract
- This study presents a machine learning-based procedure to automate the charge tuning of semiconductor spin qubits with minimal human intervention, addressing one of the significant challenges in scaling up quantum dot technologies. This method exploits artificial neural networks to identify noisy transition lines in stability diagrams, guiding a robust exploration strategy leveraging neural network uncertainty estimations. Tested across three distinct offline experimental datasets representing different single-quantum-dot technologies, this approach achieves a tuning success rate of over 99% in optimal cases, where more than 10% of the success is directly attributable to uncertainty exploitation. The challenging constraints of small training sets containing high diagram-to-diagram variability allowed us to evaluate the capabilities and limits of the proposed procedure.
Details
- Language :
- English
- ISSN :
- 26322153
- Volume :
- 5
- Issue :
- 4
- Database :
- Directory of Open Access Journals
- Journal :
- Machine Learning: Science and Technology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.10d2de8644b04d7c856861808b543b37
- Document Type :
- article
- Full Text :
- https://doi.org/10.1088/2632-2153/ad88d5