Back to Search Start Over

Dynamic behaviour and energy dissipation of offline air pockets in transient pipe flows

Authors :
Yun-Jie Li
Ling Zhou
Zhao Li
Tong-Chuan Che
Pedro Jose Lee
Yan-Qing Lu
Yin-Ying Hu
Source :
Engineering Applications of Computational Fluid Mechanics, Vol 18, Iss 1 (2024)
Publication Year :
2024
Publisher :
Taylor & Francis Group, 2024.

Abstract

The traditional one-dimensional (1D) model often fails to accurately predict the dynamic pressure response of large offline air pockets during transients, due to a lack of comprehensive understanding of the underlying mechanisms of transient interaction with offline air pockets. This study investigated dynamic behavior and energy dissipation of offline air pockets through experiments and numerical models. Experimental pressure responses were predicted using a 1D-3D coupling model, which presented superior performance compared to traditional 1D model. The 1D-3D coupling model was further utilized to investigate the air-water interface, internal energy and turbulence distribution of offline air pockets. The results reveal that the stability of the air-water interface depends on the decelerating distance of the jet in offline tube, explaining the instability phenomenon with lower water levels observed in experimental snapshots. The internal energy pattern suggests different energy dissipation mechanisms compared to the inline air pockets. The distribution of turbulence intensity and effective thermal conductivity indicates significant additional energy dissipation at the inlet and outlet of offline neck. By incorporating a minor head loss term for offline neck into traditional 1D model, the pressure response aligns well with the results obtained from 1D-3D coupling model under different flow rates and air volumes.

Details

Language :
English
ISSN :
19942060 and 1997003X
Volume :
18
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Engineering Applications of Computational Fluid Mechanics
Publication Type :
Academic Journal
Accession number :
edsdoj.10b2a10ffa3b4ba89e399a00aa9553d7
Document Type :
article
Full Text :
https://doi.org/10.1080/19942060.2024.2387060