Back to Search
Start Over
Investigation on the Microstructure of ECAP-Processed Iron-Aluminium Alloys
- Source :
- Materials, Vol 14, Iss 1, p 219 (2021)
- Publication Year :
- 2021
- Publisher :
- MDPI AG, 2021.
-
Abstract
- The present work deals with adjusting a fine-grained microstructure in iron-rich iron-aluminium alloys using the ECAP-process (Equal Channel Angular Pressing). Due to the limited formability of Fe-Al alloys with increased aluminium content, high forming temperatures and low forming speeds are required. Therefore, tool temperatures above 1100 °C are permanently needed to prevent cooling of the work pieces, which makes the design of the ECAP-process challenging. For the investigation, the Fe-Al work pieces were heated to the respective hot forming temperature in a chamber furnace and then formed in the ECAP tool at a constant punch speed of 5 mm/s. Besides the chemical composition (Fe9Al, Fe28Al and Fe38Al (at.%—Al)), the influences of a subsequent heat treatment and the holding time on the microstructure development were investigated. For this purpose, the average grain size of the microstructure was measured using the AGI (Average Grain Intercept) method and correlated with the aforementioned parameters. The results show that no significant grain refinement could be achieved with the parameters used, which is largely due to the high forming temperature significantly promoting grain growth. The holding times in the examined area do not have any influence on the grain refinement.
- Subjects :
- iron-aluminium alloys
microstructure
equal channel angular pressing (ECAP)
hot forming
bulk forming
Technology
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Engineering (General). Civil engineering (General)
TA1-2040
Microscopy
QH201-278.5
Descriptive and experimental mechanics
QC120-168.85
Subjects
Details
- Language :
- English
- ISSN :
- 19961944
- Volume :
- 14
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Materials
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.1060a973c0234d2ca5dd797cf9776988
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/ma14010219