Back to Search Start Over

In-silico Exploration of Channel Type and Efflux Silicon Transporters and Silicification Proteins in 80 Sequenced Viridiplantae Genomes

Authors :
Muhammad Amjad Nawaz
Farrukh Azeem
Alexander Mikhailovich Zakharenko
Xiao Lin
Rana Muhammad Atif
Faheem Shehzad Baloch
Ting-Fung Chan
Gyuhwa Chung
Junghee Ham
Sangmi Sun
Kirill S. Golokhvast
Source :
Plants, Vol 9, Iss 11, p 1612 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

Silicon (Si) accumulation protects plants from biotic and abiotic stresses. It is transported and distributed within the plant body through a cooperative system of channel type (e.g., OsLsi1) and efflux (Lsi2s e.g., OsLsi2) Si transporters (SITs) that belong to Noduline-26 like intrinsic protein family of aquaporins and an uncharacterized anion transporter family, respectively. Si is deposited in plant tissues as phytoliths and the process is known as biosilicification but the knowledge about the proteins involved in this process is limited. In the present study, we explored channel type SITs and Lsi2s, and siliplant1 protein (Slp1) in 80 green plant species. We found 80 channel type SITs and 133 Lsi2s. The channel type SITs characterized by the presence of two NPA motifs, GSGR or STAR selectivity filter, and 108 amino acids between two NPA motifs were absent from Chlorophytes, while Streptophytes evolved two different types of channel type SITs with different selectivity filters. Both channel type SITs and Lsi2s evolved two types of gene structures each, however, Lsi2s are ancient and were also found in Chlorophyta. Homologs of Slp1 (225) were present in almost all Streptophytes regardless of their Si accumulation capacity. In Si accumulator plant species, the Slp1s were characterized by the presence of H, D-rich domain, P, K, E-rich domain, and P, T, Y-rich domain, while moderate Si accumulators lacked H, D-rich domain and P, T, Y-rich domains. The digital expression analysis and coexpression networks highlighted the role of channel type and Lsi2s, and how Slp1 homologs were ameliorating plants’ ability to withstand different stresses by co-expressing with genes related to structural integrity and signaling. Together, the in-silico exploration made in this study increases our knowledge of the process of biosilicification in plants.

Details

Language :
English
ISSN :
22237747
Volume :
9
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Plants
Publication Type :
Academic Journal
Accession number :
edsdoj.10586ac0470c415f9b8cedbba84d79d3
Document Type :
article
Full Text :
https://doi.org/10.3390/plants9111612