Back to Search Start Over

Integration of Photogrammetric and Spectral Techniques for Advanced Drone-Based Bathymetry Retrieval Using a Deep Learning Approach

Authors :
Evangelos Alevizos
Vassilis C. Nicodemou
Alexandros Makris
Iason Oikonomidis
Anastasios Roussos
Dimitrios D. Alexakis
Source :
Remote Sensing, Vol 14, Iss 17, p 4160 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Shallow bathymetry mapping using proximal sensing techniques is an active field of research that offers a new perspective in studying the seafloor. Drone-based imagery with centimeter resolution allows for bathymetry retrieval in unprecedented detail in areas with adequate water transparency. The majority of studies apply either spectral or photogrammetric techniques for deriving bathymetry from remotely sensed imagery. However, spectral methods require a certain amount of ground-truth depth data for model calibration, while photogrammetric methods cannot perform on texture-less seafloor types. The presented approach takes advantage of the interrelation of the two methods, in order to predict bathymetry in a more efficient way. Thus, we combine structure-from-motion (SfM) outputs along with band-ratios of radiometrically corrected drone images within a specially designed deep convolutional neural network (CNN) that outputs a reliable and robust bathymetry estimation. To achieve effective training of our deep learning system, we utilize interpolated uncrewed surface vehicle (USV) sonar measurements. We perform several predictions at three locations in the southern Mediterranean Sea, with varying seafloor types. Our results show low root-mean-square errors over all study areas (average RMSE ≅ 0.3 m), when the method was trained and tested on the same area each time. In addition, we obtain promising cross-validation performance across different study areas (average RMSE ≅ 0.9 m), which demonstrates the potential of our proposed approach in terms of generalization capabilities on unseen data. Furthermore, areas with mixed seafloor types are suitable for building a model that can be applied in similar locations where only drone data is available.

Details

Language :
English
ISSN :
20724292
Volume :
14
Issue :
17
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.1038b58a96014242827ebfd67717e8d2
Document Type :
article
Full Text :
https://doi.org/10.3390/rs14174160