Back to Search Start Over

Bio-Based Waterborne Poly(Vanillin–Butyl Acrylate)/MXene Coatings for Leather with Desired Warmth Retention and Antibacterial Properties

Authors :
Jianzhong Ma
Li Ma
Lei Zhang
Wenbo Zhang
Qianqian Fan
Buxing Han
Source :
Engineering, Vol 36, Iss , Pp 250-263 (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

This study presents a solvent-free, facile synthesis of a bio-based green antibacterial agent and aromatic monomer methacrylated vanillin (MV) using vanillin. The resulting MV not only imparted antibacterial properties to coatings layered on leather, but could also be employed as a green alternative to petroleum-based carcinogen styrene (St). Herein, MV was copolymerized with butyl acrylate (BA) to obtain waterborne bio-based P(MV–BA) miniemulsion via miniemulsion polymerization. Subsequently, MXene nanosheets with excellent photothermal conversion performance and antibacterial properties, were introduced into the P(MV–BA) miniemulsion by ultrasonic dispersion. During the gradual solidification of P(MV–BA)/MXene nanocomposite miniemulsion on the leather surface, MXene gradually migrated to the surface of leather coatings due to the cavitation effect of ultrasonication and amphiphilicity of MXene, which prompted its full exposure to light and bacteria, exerting the maximum photothermal conversion efficiency and significant antibacterial efficacy. In particular, when the dosage of MXene nanosheets was 1.4 wt%, the surface temperature of P(MV–BA)/MXene nanocomposite miniemulsion-coated leather (PML) increased by about 15 °C in an outdoor environment during winter, and the antibacterial rate against Escherichia coli and Staphylococcus aureus was nearly 100% under the simulated sunlight treatment for 30 min. Moreover, the introduction of MXene nanosheets increased the air permeability, water vapor permeability, and thermal stability of these coatings. This study provides a new insight into the preparation of novel, green, and waterborne bio-based nanocomposite coatings for leather, with desired warmth retention and antibacterial properties. It can not only realize zero-carbon heating based on sunlight in winter, reducing the use of fossil fuels and greenhouse gas emissions, but also improve ability to fight off invasion by harmful bacteria, viruses, and other microorganisms.

Details

Language :
English
ISSN :
20958099
Volume :
36
Issue :
250-263
Database :
Directory of Open Access Journals
Journal :
Engineering
Publication Type :
Academic Journal
Accession number :
edsdoj.102630fe88e4434db47a098a4c7ad3b6
Document Type :
article
Full Text :
https://doi.org/10.1016/j.eng.2023.06.005