Back to Search Start Over

Sliding look-ahead window-based real-time feedrate planning for non-uniform rational B-splines curves

Authors :
Jiankang Liu
Hongya Fu
Jihao Qin
Hongyu Jin
Source :
Advances in Mechanical Engineering, Vol 10 (2018)
Publication Year :
2018
Publisher :
SAGE Publishing, 2018.

Abstract

This article presents an online three-axis non-uniform rational B-splines preprocessing and feedrate scheduling method with chord error, axial velocity, acceleration, and jerk limitations. A preprocessing method is proposed to accurately locate the critical points by reducing pre-interpolation feedrate in feedrate limit violation regions. In the preprocessing stage, the non-uniform rational B-splines curve is subdivided into segments by the critical points and the corresponding feedrate constraints are obtained. A sliding look-ahead window-based feedrate scheduling method is proposed to generate smooth feedrate profile for the buffered non-uniform rational B-splines segments. The feedrate profile corresponding to each non-uniform rational B-splines block is constructed according to the block length and the given limits of acceleration and jerk. The feedrate modification method for non-schedulable short blocks is also described which aimed at avoiding feedrate discontinuity at the junction of two non-uniform rational B-splines blocks. With the proposed method, a successful feedrate profile could be generated with sufficient look-ahead trajectory length in the buffer, which enables that the preprocessing and feedrate planning to be performed progressively online. Simulation and experimental tests with different non-uniform rational B-splines curves are carried out to validate the feasibility and advantages of the proposed method. The results show that the proposed method is capable of making a balance between the machining efficiency, machining precision, and computational complexity.

Details

Language :
English
ISSN :
16878140
Volume :
10
Database :
Directory of Open Access Journals
Journal :
Advances in Mechanical Engineering
Publication Type :
Academic Journal
Accession number :
edsdoj.0fb9c50db6de4664ad1d830789f5f407
Document Type :
article
Full Text :
https://doi.org/10.1177/1687814018816926