Back to Search
Start Over
Sliding look-ahead window-based real-time feedrate planning for non-uniform rational B-splines curves
- Source :
- Advances in Mechanical Engineering, Vol 10 (2018)
- Publication Year :
- 2018
- Publisher :
- SAGE Publishing, 2018.
-
Abstract
- This article presents an online three-axis non-uniform rational B-splines preprocessing and feedrate scheduling method with chord error, axial velocity, acceleration, and jerk limitations. A preprocessing method is proposed to accurately locate the critical points by reducing pre-interpolation feedrate in feedrate limit violation regions. In the preprocessing stage, the non-uniform rational B-splines curve is subdivided into segments by the critical points and the corresponding feedrate constraints are obtained. A sliding look-ahead window-based feedrate scheduling method is proposed to generate smooth feedrate profile for the buffered non-uniform rational B-splines segments. The feedrate profile corresponding to each non-uniform rational B-splines block is constructed according to the block length and the given limits of acceleration and jerk. The feedrate modification method for non-schedulable short blocks is also described which aimed at avoiding feedrate discontinuity at the junction of two non-uniform rational B-splines blocks. With the proposed method, a successful feedrate profile could be generated with sufficient look-ahead trajectory length in the buffer, which enables that the preprocessing and feedrate planning to be performed progressively online. Simulation and experimental tests with different non-uniform rational B-splines curves are carried out to validate the feasibility and advantages of the proposed method. The results show that the proposed method is capable of making a balance between the machining efficiency, machining precision, and computational complexity.
- Subjects :
- Mechanical engineering and machinery
TJ1-1570
Subjects
Details
- Language :
- English
- ISSN :
- 16878140
- Volume :
- 10
- Database :
- Directory of Open Access Journals
- Journal :
- Advances in Mechanical Engineering
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.0fb9c50db6de4664ad1d830789f5f407
- Document Type :
- article
- Full Text :
- https://doi.org/10.1177/1687814018816926