Back to Search
Start Over
DNA methyltransferase 1 deficiency improves macrophage motility and wound healing by ameliorating cholesterol accumulation
- Source :
- npj Regenerative Medicine, Vol 8, Iss 1, Pp 1-17 (2023)
- Publication Year :
- 2023
- Publisher :
- Nature Portfolio, 2023.
-
Abstract
- Abstract Healing of the cutaneous wound requires macrophage recruitment at the sites of injury, where chemotactic migration of macrophages toward the wound is regulated by local inflammation. Recent studies suggest a positive contribution of DNA methyltransferase 1 (Dnmt1) to macrophage pro-informatory responses; however, its role in regulating macrophage motility remains unknown. In this study, myeloid-specific depletion of Dnmt1 in mice promoted cutaneous wound healing and de-suppressed the lipopolysaccharides (LPS)-inhibited macrophage motility. Dnmt1 inhibition in macrophages eliminated the LPS-stimulated changes in cellular mechanical properties in terms of elasticity and viscoelasticity. LPS increased the cellular accumulation of cholesterol in a Dnmt1-depedent manner; cholesterol content determined cellular stiffness and motility. Lipidomic analysis indicated that Dnmt1 inhibition altered the cellular lipid homeostasis, probably through down-regulating the expression of cluster of differentiation 36 CD36 (facilitating lipid influx) and up-regulating the expression of ATP-binding cassette transporter ABCA1 (mediating lipid efflux) and sterol O-acyltransferase 1 SOAT1 (also named ACAT1, catalyzing the esterification of cholesterol). Our study revealed a Dnmt1-dependent epigenetic mechanism in the control of macrophage mechanical properties and the related chemotactic motility, indicating Dnmt1 as both a marker of diseases and a potential target of therapeutic intervention for wound healing.
- Subjects :
- Medicine
Subjects
Details
- Language :
- English
- ISSN :
- 20573995
- Volume :
- 8
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- npj Regenerative Medicine
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.0fb644835c0d46568a5d7b710e1a0254
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41536-023-00306-2