Back to Search Start Over

Study on the Momentum Flux Spectrum of Gravity Waves in the Tropical Western Pacific Based on Integrated Satellite Remote Sensing and In Situ Observations

Authors :
Zhimeng Zhang
Yang He
Yuyang Song
Zheng Sheng
Source :
Remote Sensing, Vol 16, Iss 14, p 2550 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Gravity wave (GW) momentum flux spectra help to uncover the mechanisms through which GWs influence momentum transfer in the atmosphere and provide crucial insights into accurately characterizing atmospheric wave processes. This study examines the momentum flux spectra of GWs in the troposphere (2–14 km) and stratosphere (18–28 km) over Koror Island (7.2°N, 134.3°W) using radiosonde data from 2013–2018. Utilizing hodograph analysis and spectral methods, the characteristics of momentum flux spectra are discussed. Given that the zonal momentum flux spectra of low-level atmospheric GWs generally follow a Gaussian distribution, Gaussian fitting was applied to the spectral structures. This fitting further explores the seasonal variations of the zonal momentum flux spectra and the average spectral parameters for each month. Additionally, the GW energy is analyzed using SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) satellite data and compared with the results of the momentum flux spectra from radiosonde data, revealing the close negative correlation between wave energy and wave momentum for stratospheric GW changing with time. The findings indicate that the Gaussian peak shifts more eastward in both the troposphere and stratosphere, primarily due to the absorption of eastward-propagating GWs by the winter tropospheric westerly jet and critical layer filtering. The full width at half maximum (FWHM) in the stratosphere is larger than in the troposphere, especially in June and July, as the spectrum broadens due to propagation effects, filtering, and interactions among waves. The central phase speed in the stratosphere exceeds that in the troposphere, reflecting the influences of Doppler effects and background wind absorption. The momentum flux in the stratosphere is lower than in the troposphere, which is attributed to jet absorption, partial reflection, or the dissipation of GWs.

Details

Language :
English
ISSN :
20724292
Volume :
16
Issue :
14
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.0faab896420c4d808675b1440c7d9a84
Document Type :
article
Full Text :
https://doi.org/10.3390/rs16142550