Back to Search Start Over

GaitRec-Net: A Deep Neural Network for Gait Disorder Detection Using Ground Reaction Force

Authors :
Chandrasen Pandey
Diptendu Sinha Roy
Ramesh Chandra Poonia
Ayman Altameem
Soumya Ranjan Nayak
Amit Verma
Abdul Khader Jilani Saudagar
Source :
PPAR Research, Vol 2022 (2022)
Publication Year :
2022
Publisher :
Hindawi Limited, 2022.

Abstract

Walking (gait) irregularities and abnormalities are predictors and symptoms of disorder and disability. In the past, elaborate video (camera-based) systems, pressure mats, or a mix of the two has been used in clinical settings to monitor and evaluate gait. This article presents an artificial intelligence-based comprehensive investigation of ground reaction force (GRF) pattern to classify the healthy control and gait disorders using the large-scale ground reaction force. The used dataset comprised GRF measurements from different patients. The article includes machine learning- and deep learning-based models to classify healthy and gait disorder patients using ground reaction force. A deep learning-based architecture GaitRec-Net is proposed for this classification. The classification results were evaluated using various metrics, and each experiment was analysed using a fivefold cross-validation approach. Compared to machine learning classifiers, the proposed deep learning model is found better for feature extraction resulting in high accuracy of classification. As a result, the proposed framework presents a promising step in the direction of automatic categorization of abnormal gait pattern.

Subjects

Subjects :
Biology (General)
QH301-705.5

Details

Language :
English
ISSN :
16874765
Volume :
2022
Database :
Directory of Open Access Journals
Journal :
PPAR Research
Publication Type :
Academic Journal
Accession number :
edsdoj.0f9fa9ae327741e4a753b410ed9158ea
Document Type :
article
Full Text :
https://doi.org/10.1155/2022/9355015