Back to Search Start Over

Response characteristics of rhizosphere microbial community and metabolites of Iris tectorum to Cr stress

Authors :
Luying Sheng
Wei Zhao
Xiuqin Yang
Huan Mao
Sixi Zhu
Source :
Ecotoxicology and Environmental Safety, Vol 263, Iss , Pp 115218- (2023)
Publication Year :
2023
Publisher :
Elsevier, 2023.

Abstract

Chromium (Cr) is a toxic heavy element that interferes with plant metabolite biosynthesis and modifies the plant rhizosphere microenvironment, affecting plant growth. However, the interactions and response mechanisms between plants and rhizosphere bacteria under Cr stress still need to be fully understood. In this study, we used Iris tectorum as a research target and combined physiology, metabolomics, and microbiology to reveal the stress response mechanism of I. tectorum under heavy metal chromium stress. The results showed that Cr stress-induced oxidative stress inhibited plant growth and development and increased malondialdehyde and oxygen free radicals content. Also, it increased ascorbate peroxidase, peroxidase activity, and superoxide dismutase activity, as well as glutathione and soluble sugar content. Microbiome analysis showed that Cr stress changed the rhizosphere bacterial community diversity index by 33.56%. Proteobacteria, Actinobacteriota, and Chloroflexi together accounting for 71.21% of the total sequences. Meanwhile, the abundance of rhizosphere dominant and plant-promoting bacteria increased significantly with increasing time of Cr stress. The improvement of the soil microenvironment and the recruitment of bacteria by I. tectorum root secretions were significantly enhanced. By metabolomic analysis, five vital metabolic pathways were identified, involving 89 differentially expressed metabolites, divided into 15 major categories. In summary, a multi-omics approach was used in this study to reveal the interaction and stress response mechanisms between I. tectorum and rhizosphere bacterial communities under Cr stress, which provided theoretical basis for plant-microbial bioremediation of Cr-contaminated soils in constructed wetlands. This may provide more valuable information for wetland remediation of heavy metal pollution.

Details

Language :
English
ISSN :
01476513 and 78231450
Volume :
263
Issue :
115218-
Database :
Directory of Open Access Journals
Journal :
Ecotoxicology and Environmental Safety
Publication Type :
Academic Journal
Accession number :
edsdoj.0f8f27b78231450582811419a11b270c
Document Type :
article
Full Text :
https://doi.org/10.1016/j.ecoenv.2023.115218