Back to Search Start Over

Investigating compatibilization of polyoxymethylene/styrene-butadiene-styrene immiscible blend through addition of hydroxylated graphene

Authors :
Seyed Alireza Sadri
Mahdi Arefkhani
Parsa Dadashi
Amir Babaei
Mohammad Abbasi
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-15 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract The main objective of this work was to use hydroxyl-functionalized graphene as a compatibilizer for an immiscible blend. A neat polyoxymethylene/styrene-butadiene-styrene binary blend was prepared at a constant ratio (80/20) and then was compounded with different loading amounts of hydroxyl-functionalized graphene (0.25, 0.5, 0.75, and 1 wt%). The formation of droplet-matrix morphology during blending was observed in microscopy images. A deep understanding of the compatibility was inspected through studying the mechanical, rheological, and microstructural properties. By inspecting the localization of nanoparticles, triple functions of hydroxyl-functionalized graphene as a compatibilizing/reinforcing/lubricating agent were elucidated. The mechanical properties showed that the best compatibility with the ultimate performance was related to the nanocomposite containing 0.25 wt%. Furthermore, the electrical conductivity of the prepared nanocomposites was investigated. Thermodynamic/kinetic studies showed the tendency of hydroxyl-functionalized graphene to disperse droplets, however as the loading value increases, the probability of its presence in the matrix also increases, creating conductive pathways for conductive purposes. The lowest resistance and highest volume of electrical conductivity (8.4 × 10−6 S.cm−1) were shown by 1 wt% FG.

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.0f8794a17f4b539e10e2af237a0759
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-76507-6