Back to Search
Start Over
All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications
- Source :
- Scientific Reports, Vol 7, Iss 1, Pp 1-7 (2017)
- Publication Year :
- 2017
- Publisher :
- Nature Portfolio, 2017.
-
Abstract
- Abstract The femtosecond laser micromachining of transparent optical materials offers a powerful and feasible solution to fabricate versatile photonic components towards diverse applications. In this work, we report on a new design and fabrication of ridge waveguides in LiNbO3 crystal operating at the mid-infrared (MIR) band by all-femtosecond-laser microfabrication. The ridges consist of laser-ablated sidewalls and laser-written bottom low-index cladding tracks, which are constructed for horizontal and longitudinal light confinement, respectively. The ridge waveguides are found to support good guidance at wavelength of 4 μm. By applying this configuration, Y-branch waveguiding structures (1 × 2 beam splitters) have been produced, which reach splitting ratios of ∼1:1 at 4 μm. This work paves a simple and feasible way to construct novel ridge waveguide devices in dielectrics through all-femtosecond-laser micro-processing.
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 7
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.0f42654ff2dd4d019558fd4d806bae3e
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-017-07587-w