Back to Search Start Over

Estrogen and G protein-coupled estrogen receptor accelerate the progression of benign prostatic hyperplasia by inducing prostatic fibrosis

Authors :
Yang Yang
Jindong Sheng
Shuai Hu
Yun Cui
Jing Xiao
Wei Yu
Jing Peng
Wenke Han
Qun He
Yu Fan
Yuanjie Niu
Jun Lin
Ye Tian
Chawnshang Chang
Shuyuan Yeh
Jie Jin
Source :
Cell Death and Disease, Vol 13, Iss 6, Pp 1-14 (2022)
Publication Year :
2022
Publisher :
Nature Publishing Group, 2022.

Abstract

Abstract Benign prostatic hyperplasia (BPH) is the most common and progressive urological disease in elderly men worldwide. Epidemiological studies have suggested that the speed of disease progression varies among individuals, while the pathophysiological mechanisms of accelerated clinical progression in some BPH patients remain to be elucidated. In this study, we defined patients with BPH as belonging to the accelerated progressive group (transurethral resection of the prostate [TURP] surgery at ≤50 years old), normal-speed progressive group (TURP surgery at ≥70 years old), or non-progressive group (age ≤50 years old without BPH-related surgery). We enrolled prostate specimens from the three groups of patients and compared these tissues to determine the histopathological characteristics and molecular mechanisms underlying BPH patients with accelerated progression. We found that the main histopathological characteristics of accelerated progressive BPH tissues were increased stromal components and prostatic fibrosis, which were accompanied by higher myofibroblast accumulation and collagen deposition. Mechanism dissection demonstrated that these accelerated progressive BPH tissues have higher expression of the CYP19 and G protein-coupled estrogen receptor (GPER) with higher estrogen biosynthesis. Estrogen functions via GPER/Gαi signaling to modulate the EGFR/ERK and HIF-1α/TGF-β1 signaling to increase prostatic stromal cell proliferation and prostatic stromal fibrosis. The increased stromal components and prostatic fibrosis may accelerate the clinical progression of BPH. Targeting this newly identified CYP19/estrogen/GPER/Gαi signaling axis may facilitate the development of novel personalized therapeutics to better suppress the progression of BPH.

Subjects

Subjects :
Cytology
QH573-671

Details

Language :
English
ISSN :
20414889
Volume :
13
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Cell Death and Disease
Publication Type :
Academic Journal
Accession number :
edsdoj.0f14eab5f3884b2cacbd8880bbdc0f11
Document Type :
article
Full Text :
https://doi.org/10.1038/s41419-022-04979-3