Back to Search Start Over

Low threshold for nitrogen concentration saturation in headwaters increases regional and coastal delivery

Authors :
Noah M Schmadel
Judson W Harvey
Richard B Alexander
Elizabeth W Boyer
Gregory E Schwarz
Jesus D Gomez-Velez
Durelle Scott
Christopher P Konrad
Source :
Environmental Research Letters, Vol 15, Iss 4, p 044018 (2020)
Publication Year :
2020
Publisher :
IOP Publishing, 2020.

Abstract

River corridors store, convey, and process nutrients from terrestrial and upstream sources, regulating delivery from headwaters to estuaries. A consequence of chronic excess nitrogen loading, as supported by theory and field studies in specific watersheds, is saturation of the biogeochemically-mediated nitrogen removal processes that weakens the capacity of the river corridor to remove nitrogen. Regional nitrogen models typically assume that removal capacity exhibits first-order behavior, scaling positively and linearly with increasing concentration, which may bias the estimation of where and at what rate nitrogen is removed by river corridors. Here we estimate the nitrogen concentration saturation threshold and its effects on annual nitrogen export from the Northeastern United States, revealing an average 42% concentration-induced reduction in headwater removal capacity. The weakened capacity caused an average 10% increase in the predicted delivery of riverine nitrogen from urban and agricultural watersheds compared to estimates using first-order process assumptions. Our results suggest that nitrogen removal may fall below a first-order rate process as riverine concentration increases above a threshold of 0.5 mg N l ^−1 . Threshold behavior indicates that even modest mitigation of nitrogen concentration in river corridors above the threshold can cause a self-reinforcing boost to nitrogen removal.

Details

Language :
English
ISSN :
17489326
Volume :
15
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Environmental Research Letters
Publication Type :
Academic Journal
Accession number :
edsdoj.0ef271a8daf84d268acdc2145df5f1de
Document Type :
article
Full Text :
https://doi.org/10.1088/1748-9326/ab751b