Back to Search
Start Over
Quantifying Per-Cell Chlorophyll a in Natural Picophytoplankton Populations Using Fluorescence-Activated Cell Sorting
- Source :
- Frontiers in Marine Science, Vol 9 (2022)
- Publication Year :
- 2022
- Publisher :
- Frontiers Media S.A., 2022.
-
Abstract
- Marine phytoplankton play a central role in global biogeochemical cycling, carbon export, and the overall functioning of marine ecosystems. While chlorophyll a (Chl a) is widely used as a proxy for phytoplankton biomass, identifying the proportion of Chl a attributable to different phytoplankton groups remains a major challenge in oceanography, especially for the picophytoplankton groups that often represent the majority of phytoplankton biomass in the open ocean. We describe a method for measuring picophytoplankton per-cell Chl a in field samples using fluorescence-activated cell sorting followed by solvent-based Chl a extraction and fluorescence quantification. Applying this method to surface samples from the Gulf of Mexico, we determined per-cell Chl a to be 0.24 ± 0.07, 0.6 ± 0.33, and 26.36 ± 20.9 fg Chl a cell-1 for Prochlorococcus, Synechococcus, and PPE, respectively (mean ± SD). Measurements of per-cell Chl a using this method are precise to within 1.7, 2.1, and 3.1% for Prochlorococcus, Synechococcus, and PPE, respectively. We demonstrate that this approach can be used to obtain estimates of group-specific Chl a for Prochlorococcus, Synechococcus, and picophytoeukaryotes, the latter two of which cannot be captured by existing methods. We also demonstrate that measurements of per-cell Chl a made using this method in field samples are sufficiently precise to capture relationships between per-cell Chl a and cytometer red fluorescence, providing a bridge between biomass estimates from cell counts and bulk measurements of total Chl a.
Details
- Language :
- English
- ISSN :
- 22967745
- Volume :
- 9
- Database :
- Directory of Open Access Journals
- Journal :
- Frontiers in Marine Science
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.0ee2f12c76d423ba93f90a3bbb73f72
- Document Type :
- article
- Full Text :
- https://doi.org/10.3389/fmars.2022.850646