Back to Search Start Over

Bacillus firmus Strain I-1582, a Nematode Antagonist by Itself and Through the Plant

Authors :
Zahra Ghahremani
Nuria Escudero
Daniel Beltrán-Anadón
Ester Saus
Marina Cunquero
Jordi Andilla
Pablo Loza-Alvarez
Toni Gabaldón
F. Javier Sorribas
Source :
Frontiers in Plant Science, Vol 11 (2020)
Publication Year :
2020
Publisher :
Frontiers Media S.A., 2020.

Abstract

Bacillus firmus I-1582 is approved in Europe for the management of Meloidogyne on vegetable crops. However, little information about its modes of action and temperature requirements is available, despite the effect of these parameters in its efficacy. The cardinal temperatures for bacterial growth and biofilm formation were determined. The bacteria was transformed with GFP to study its effect on nematode eggs and root colonization of tomato (Solanum lycopersicum) and cucumber (Cucumis sativus) by laser-scanning confocal microscopy. Induction of plant resistance was determined in split-root experiments and the dynamic regulation of genes related to jasmonic acid (JA) and salicylic acid (SA) by RT-qPCR at three different times after nematode inoculation. The bacteria was able to grow and form biofilms between 15 and 45°C; it degraded egg-shells and colonized eggs; it colonized tomato roots more extensively than cucumber roots; it induced systemic resistance in tomato, but not in cucumber; SA and JA related genes were primed at different times after nematode inoculation in tomato, but only the SA-related gene was up-regulated at 7 days after nematode inoculation in cucumber. In conclusion, B. firmus I-1582 is active at a wide range of temperatures; its optimal growth temperature is 35°C; it is able to degrade Meloidogyne eggs, and to colonize plant roots, inducing systemic resistance in a plant dependent species manner.

Details

Language :
English
ISSN :
1664462X
Volume :
11
Database :
Directory of Open Access Journals
Journal :
Frontiers in Plant Science
Publication Type :
Academic Journal
Accession number :
edsdoj.0ec256c30c214872b0f58c6da79aca41
Document Type :
article
Full Text :
https://doi.org/10.3389/fpls.2020.00796