Back to Search Start Over

A side-sampling based Linformer model for landslide susceptibility assessment: a case study of the railways in China

Authors :
Nan Jiang
Yange Li
Zheng Han
Jiaming Yang
Bangjie Fu
Jiaying Li
Changli Li
Source :
Geomatics, Natural Hazards & Risk, Vol 15, Iss 1 (2024)
Publication Year :
2024
Publisher :
Taylor & Francis Group, 2024.

Abstract

The improvement of landslide susceptibility assessment is a long-standing problem in hazard mitigation work, wherein previous studies have proposed various training models. However, the ratio of positive to negative samples and the selection of non-landslide samples have been shown to significantly influence results. These research directions have traditionally been focal points, while datasets are often overlooked, serving merely as auxiliary tools to support the validation process. Hence, this study proposes an approach to enhance datasets through the introduction of the side-sampling method. This technique focuses on individual research cells, conducting feature sampling training on fixed regions of length M, thereby enabling more precise identification of geographical clustering characteristics. Using evaluation metrics such as accuracy, precision, recall, F1 score, and ROC curve, this study conducts a comparative analysis between the side-sampling method and traditional sampling methods, using three distinct railway lines in China as the study areas. Results show substantial improvements beyond several exceptions: accuracy (+7.68%), precision (+7.19%), recall (+13.48%), F1 score (+9.92%), and ROC (+6.22%). The results demonstrate a significant overall improvement in the performance of the trained models based on the side-sampling method, providing a positive insight into mitigating landslide hazards along railways from the dataset perspective.

Details

Language :
English
ISSN :
19475705 and 19475713
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Geomatics, Natural Hazards & Risk
Publication Type :
Academic Journal
Accession number :
edsdoj.0e4dcb00ee60416f858ba1d076861a5e
Document Type :
article
Full Text :
https://doi.org/10.1080/19475705.2024.2354507