Back to Search Start Over

High-Fat Diet Alleviates Neuroinflammation and Metabolic Disorders of APP/PS1 Mice and the Intervention With Chinese Medicine

Authors :
Xiaorui Fan
Bin Liu
Junyi Zhou
Xinru Gu
Yanyan Zhou
Yifei Yang
Feifei Guo
Xiaolu Wei
Hongjie Wang
Nan Si
Jian Yang
Baolin Bian
Haiyu Zhao
Source :
Frontiers in Aging Neuroscience, Vol 13 (2021)
Publication Year :
2021
Publisher :
Frontiers Media S.A., 2021.

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disease caused by the complex interaction of multiple mechanisms. Recent studies examining the effect of high-fat diet (HFD) on the AD phenotype have demonstrated a significant influence on both inflammation and cognition. However, different studies on the effect of high-fat diet on AD pathology have reported conflicting conclusions. To explore the involvement of HFD in AD, we investigated phenotypic and metabolic changes in an AD mouse model in response to HFD. The results indicated there was no significant effect on Aβ levels or contextual memory due to HFD treatment. Of note, HFD did moderate neuroinflammation, despite spurring inflammation and increasing cholesterol levels in the periphery. In addition, diet affected gut microbiota symbiosis, altering the production of bacterial metabolites. HFD created a favorable microenvironment for bile acid alteration and arachidonic acid metabolism in APP/PS1 mice, which may be related to the observed improvement in LXR/PPAR expression. Our previous research demonstrated that Huanglian Jiedu decoction (HLJDD) significantly ameliorated impaired learning and memory. Furthermore, HLJDD may globally suppress inflammation and lipid accumulation to relieve cognitive impairment after HFD intervention. It was difficult to define the effect of HFD on AD progression because the results were influenced by confounding factors and biases. Although there was still obvious damage in AD mice treated with HFD, there was no deterioration and there was even a slight remission of neuroinflammation. Moreover, HLJDD represents a potential AD drug based on its anti-inflammatory and lipid-lowering effects.

Details

Language :
English
ISSN :
16634365
Volume :
13
Database :
Directory of Open Access Journals
Journal :
Frontiers in Aging Neuroscience
Publication Type :
Academic Journal
Accession number :
edsdoj.0df0384509a34f128780fb9d52e88199
Document Type :
article
Full Text :
https://doi.org/10.3389/fnagi.2021.658376